Пропан: способы получения и химические свойства

Пропан, формула, газ, характеристики:

Пропан (лат. propanum) – органическое вещество класса алканов, состоящий из трех атомов углерода и восьми атомов водорода.

Химическая формула пропана C3H8, рациональная формула CH3CH2CH3. Изомеров не имеет.

Пропан – бесцветный газ, без вкуса и запаха. Однако в пропан, используемый в качестве технического газа, могут добавляться одоранты – вещества, имеющие резкий неприятный запах для предупреждения его утечки.

В природе содержится в природном газе, добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе. Для выделения из природного и попутного нефтяного газа производят их очистку и сепарацию газа.

Образуется также при крекинге нефтепродуктов., в т.ч. сланцевой нефти.

Также содержится в сланцевом газе и сжиженном газе (сжиженном природном газе).

Пожаро- и взрывоопасен.

Не растворяется в воде и других полярных растворителях. Зато растворяется в некоторых неполярных органических веществах (метанол, ацетон, бензол, тетрахлорметан, диэтиловый эфир и другие).

Пропан по токсикологической характеристике относится к веществам 4-го класса опасности (малоопасным веществам) по ГОСТ 12.1.007.

Строение

Формула пропана

Пропан — это предельный углеводород, состоящий из трех атомов углерода. По этой причине он имеет изогнутую форму, но из-за постоянного вращения вокруг осей связей существует несколько молекулярных конформаций. Связи в молекуле ковалентные: С-С неполярные, C-H слабополярные. Из-за этого их сложно разорвать, а вещество довольно трудно вступает в химические реакции. Это и задает все химические свойства пропана. Изомеров у него нет. Молярная масса пропана — 44,1 г/моль.

Физические свойства

Бесцветный газ без запаха[4]. Очень мало растворим в воде. Точка кипения −42,1 °C. Точка замерзания −188 °C. Образует с воздухом взрывоопасные смеси при концентрации паров от 1,7 до 10,9 %. Критическая температура пропана Tкр = 370 К, критическое давление Pкр = 4,27 МПа, критический удельный объём Vкр = 0,00444 м3/кг[5] Плотность сжиженного пропана при 298 K — 0,493 т/м3.

  • Плотность газовой фазы при нормальных условиях = 2,019 кг/м3.
  • Плотность газовой фазы при температуре 15°С = 1,900 кг/м3.
  • Удельная теплота сгорания = 48 МДж/кг.

Плотность пропана C3H8 при различной температуре

  • Представлены таблицы значений плотности пропана C3H8 при различных температурах и давлении.
  • В первой таблице рассмотрена плотность пропана в газообразном состоянии при положительной и отрицательной температуре (от -33 до 407°С) и нормальном атмосферном давлении.
  • Во второй таблице приведена плотность сжиженного пропана, находящегося в сжатом состоянии, при давлении от 20 до 200 бар и температуре 20…100°С.

Плотность газообразного пропана

Плотность газа пропана при нормальных условиях имеет значение 1,985 кг/м3. Пропан, как и другие газы с молярной массой более 29-ти, тяжелее воздуха. Он занимает третье место после метана и этана по молярной массе среди углеводородов с брутто-формулой CnH2n+2.

Плотность пропана в газообразном состоянии при увеличении его температуры снижается. При нагревании этот газ увеличивается в объеме, что при постоянной массе приводит к снижению его плотности. Например, при росте температуры с 7 до 407°С плотность газа пропана снижается в почти в 2,5 раза — с 1,958 до 0,791 кг/м3.

Плотность пропана газообразного

t, °С
ρ, кг/м3
t, °С
ρ, кг/м3
t, °С
ρ, кг/м3

-33 2,317 87 1,506 207 1,124
-23 2,214 97 1,464 217 1,1
-13 2,121 107 1,425 227 1,078
-3 2,036 117 1,387 247 1,036
7 1,958 127 1,352 267 0,998
17 1,886 137 1,318 287 0,962
27 1,82 147 1,287 307 0,928
37 1,758 157 1,256 327 0,897
47 1,701 167 1,227 347 0,868
57 1,647 177 1,2 367 0,841
67 1,597 187 1,173 387 0,815
77 1,55 197 1,148 407 0,791

Плотность сжиженного пропана

Плотность сжиженного пропана значительно больше, чем газообразного. При комнатной температуре она лишь немногим меньше плотности некоторых жидких углеводородных топлив и почти в два раза меньше плотности воды. Например, при температуре 20°С и давлении 20 бар (19,74 атм.) плотность пропана сжиженного составляет величину 510,7 кг/м3.

При увеличении давления при постоянной температуре плотность пропана в жидком состоянии увеличивается. При нагревании сжиженного пропана при постоянном давлении его плотность снижается — пропан становиться менее плотным.

Зависимость изменения плотности жидкого пропана от давления менее существенна, чем от температуры. При росте давления в 10 раз (с 20 до 200 бар) его плотность увеличивается всего на 6…10%. Причем, это увеличение тем больше, чем выше температура жидкого пропана.

Плотность пропана сжиженного в кг/м3 ↓ P, бар / t, °С →
20
40
60
80
100

20 510,7 476,9
40 515,2 483,3 445,8 393,5
60 518,9 489,7 456 412,7 347,6
80 523 495,3 464,7 427,7 381,2
100 526,9 500,5 472,4 439,8 401,1
120 530,2 505,1 479,2 449,6 416
140 533,6 509,4 485 458,1 427,5
160 536,8 513,3 490,2 464,9 436,7
180 539,7 517,1 495 471 444,4
200 542,6 520,6 499,2 476,2 450,9

Химические свойства

Аналогичны свойствам других представителей ряда алканов (горение, дегидрирование, галогенирование, нитрирование, крегинг).

Реакции замещения

В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование

Пропан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании пропана образуется смесь хлорпроизводных.

Например, при хлорировании пропана образуются 1-хлорпропан и 2-хлопропан:

Бромирование протекает более медленно и избирательно.

Избирательность бромирования: сначала замещается атом водорода у третичного атома углерода, затем атом водорода у вторичного атома углерода, и только затем первичный атом.
С третичный–Н > С вторичный–Н > С первичный–Н
Например, при бромировании пропана преимущественно образуется 2-бромпропан:

Хлорпропан может взаимодействовать с хлором и дальше с образованием дихлорпропана, трихлорпропана, тетрахлорпропана и т.д.

1.2. Нитрование пропана

Пропан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании и под давлением. Атом водорода в пропане замещается на нитрогруппу NO2.

Например. При нитровании пропана образуется преимущественно 2-нитропропан:

Окисление пропана

Пропан

– слабополярное соединение, поэтому при обычных условиях он не окисляется даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение

Пропан горит с образованием углекислого газа и воды. Реакция горения пропана сопровождается выделением большого количества теплоты.

2C3H6 + 9O2 → 6CO2 + 6H2O + Q

Уравнение сгорания алканов в общем виде:

CnH2n+2 + (3n+1)/2O2 → nCO2 + (n+1)H2O + Q

При горении пропана в недостатке кислорода может образоваться угарный газ СО или сажа С.

Дегидрирование пропана – способ получения пропилена

Дегидрирование пропана как промышленный способ получения пропилена используется с 1990 года. В процессе дегидрирования практически отсутствуют побочные продукты.

В соответствии с данной технологией пропан (и небольшое количество водорода для снижения коксообразования) подают в реактор с неподвижным либо движущимся слоем катализатора при температуре 510-700 ºС при атмосферном давлении. Катализатором служит платина, нанесенная на активированный оксид алюминия, содержащий 20% хрома. При любой конструкции реактора необходима постоянная регенерация катализатора для сохранения его активности. Выходящий из реактора поток поступает в стандартные колонны для разделения. Непрореагировавший пропан и некоторое количество водорода возвращаются в процесс, смешиваясь со свежей порцией сырья. Оставшийся продукт содержит примерно 85% пропилена, 4% водорода, а также легкие и тяжелые отходящие газы.

Применение данной технологии оправдано при высоком спросе на пропилен, превышающем спрос на этилен. Отсутствие побочных продуктов избавляет от дополнительных усилий по их реализации. Одним из ключевых моментов для производства пропилена дегидрированием пропана является разница цен пропилена и пропана. Если разница будет недостаточной, то может оказаться, что производимый пропилен будет стоить дороже, чем по рыночным расценкам. Однако нельзя сказать, что процесс дегидрирования используется лишь при наличии источника достаточно дешевого пропана. Фактически, большинство заводов по дегидрированию пропана расположено в местах, где существует особая потребность в пропилене, а не там, где есть дешевый пропан. В то время как большая часть пропилена производится при переработке нефти и ее продуктов, получение пропилена дегидрированием пропана позволяет получать сырье, которое не связано напрямую с ценами на нефть.

Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH→R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.

При взаимодействии бутаноата натрия с гидроксидом натрия при сплавлении образуются пропан и карбонат натрия:

CH3–CH2–CH2–COONa + NaOH→CH3–CH2–CH3 + Na2CO3

Пропан-бутановая смесь

Она имеет много преимуществ перед другими видами топлива, в том числе природным газом:

  • высокий КПД;
  • легкий возврат к газообразному состоянию;
  • хорошие испарение и сжигание при окружающей температуре.

горение пропана

Пропан в полной мере отвечает этим качествам, а вот бутаны несколько хуже испаряются при понижении температуры до -40°С. Исправить этот недостаток помогают добавки, лучшая из которых — это пропан.

Пропан-бутановую смесь применяют для отопления и приготовления пищи, при газовой сварке металлов и их резке, как топливо для транспортных средств и для химического синтеза.

Характеристика и свойства газовой смеси пропан-бутан

Температура кипения пропана в зависимости от давления

Монтаж системы СНГ на автомобиль требует опыта и ответственности.

Выполнение операций без надлежащей осторожности из-за некомпетентности, небрежности или несоблюдения действующих нормативов, может привести к чрезвычайно ОПАСНЫМ ситуациям.

Следовательно важно, чтобы монтажник был знаком со свойствами СНГ, хорошо знал все комплектующие системы и следовательно мог правильно выполнить их монтаж и техническое обслужиавние.

Сжиженный нефтяной газ (СНГ)

Так называют коммерческую смесь пропан-бутана, получаемую после переработки сырой нефти, из побочных нефтепродуктов или из природного газа. Характеристики, приведенные в таблице 1.1, показывают физико-химические свойства пропана и бутана.

Газ Пропан Бутан
Химическая формула C3 H8 C4 H10
Молекулярный вес 44 58
Удельный вес 0,510 кг/л 0,580 кг/л
Точка кипения -43 °C -0,5 °C
Миним. теплотворная спосбность 11070 Ккал/кг 10920 Ккал/кг
Температура зажигания °C 510 °C на воздухе 490 °C на воздухе
Пределы зажигания в % от объема 2,1 – 9,5 1,5 – 8,5
Скорость зажигания в см/сек 32 на воздухе 32 на воздухе
таб 1.1– Физико-химические свойства

Основные характеристики

Одной из основных характеристик, отличающих СНГ, и следовательно определяющих его применение, является насыщение пара, соответствующее давлению газообразной фазы, находящейся в равновесии с жидкой фазой в закрытом баллоне. то есть как насыщение испарений бутана при 0 градусах будет равно 0.

005 бар, а при 15 градусах – 0.8 бар, в то время как насыщение испарений пропана будет соответственно 4 бара и примерно 6,5 бар. Это определяет значительные перепады давления смеси при изменении процентного соотношения бутана и пропана.

Давление повышается также при повышении температуры и следовательно приводит к сильным изменениям объема СНГ в жидком состоянии.

Следовательно если баллон полностью заправлен СНГ в сжиженном состоянии, и температура продолжает подниматься, происходит резкое повышение давления, которое может привести к аварийному сбросу давления через мультиклапан .

Категорически запрещается полностью заправлять баллон сжиженным СНГ. Еще одной важной характеристикой, отличающей эти два газа (бутан и пропан), является точка их кипения, то есть температура, при которой газ переходит из жидкого состояния в газообразное.

В то время как пропан при температуре –43°C больше не переходит в газообразное состояние и остается в жидком, для бутана это происходит при температуре 0°C .

По этой причине в условиях особо холодного климата необходимо использовать смеси, содержащие повышенный процент пропана, который способствует переходу СНГ в газообразное состояние.

Использование СНГ в качестве топлива для автомобилей

СНГ дает высококачественную энергию и используется в жилищной сфере, в промышленности, в ремесленной и сельскохозяйственной отраслях, а также в автомобильной промышленности. Так как СНГ является эффективной заменой бензина и дизельного топлива, любопытно провести сравнение этих продуктов и проанализировать их характеристики (табл. 1.2).

ХАРАКТЕРИСТИКА ПРОПАН БУТАН БЕНЗИН ДИЗЕЛЬ
Плотность 15°C (кг/л) 0,508 0,584 0,73 – 0,78 0,81-0,85
Напряжение пара при 37,8°C (бар) 12,1 2,6 0,5 – 0,9 0,003
Точка кипения (°C) – 43 – 0,5 30 – 225 150-560
Октановое число по исследовательскому методу R.O.N. 111 103 96 – 98
Октановое число по моторному методу M.O.N. 97 89 85 – 87
Миним. теплотворная способность (МДж/кг) 46,1 45,46 44,03 42,4
Миним. теплотворная способность (МДж/л) 23,4 26,5 32,3 35,6
Стехиометрическая смесь (кг/кг) 15,8 15,6 14,7
Теплотворная способность стехиом. смеси (КДж/м3) 3414 3446 3482
Табл. 1.2 – Характеристики основных типов топлива.

Из анализа данных, приведенных в таблице, видно, что диапазон кипения бензина и дизеля выше температуры окружающей среды, в то время как СНГ кипит при более низкой температуре. Это значит, что бензин и дизель остаются в жидком состоянии в бензобаке при атмосферном давлении, в то время как СНГ должен подвергнуться воздействию определенного давления.

Это давление, как следует из таблицы 1.2, является довольно низким (несколько бар). Даже если теоретически для бензина точка кипения выше температуры окружающей среды, он также подвержен испарению, поэтому в современных автомобилях он содержится в герметичных бензобаках. Из анализа значений октанового числа по исследовательскому методу (R.O.N.) и значений октанового числа по моторному методу (M.O.N.) видно, что антидетонационная способность СНГ значительно выше по сравнению с бензином Супер-98. Теплотворная способность СНГ по сравнению с дизелем и бензином является более высокой.

В случае дизеля и бензина, их расход автомобилем, по отношению к кг/массы, более низкий по сравнению с СНГ; если сравнить расход по отношению к объему, результат получается противоположным по причине иного удельного веса.

Нахождение в природе и методы получения

Основные природные источники пропана — это нефтяные и газовые месторождения. Он содержится в природном газе (от 0,1 до 11,0%) и в попутных нефтяных газах. Довольно много бутана получают в процессе ректификации нефти — разделении ее на фракции, основываясь на температурах кипения ее компонентов. Из химических способов переработки нефти наибольшее значение имеет каталитический крекинг, в процессе которого происходит разрыв цепи высокомолекулярных алканов. При этом пропана образуется порядка 16-20% от всех газообразных продуктов этого процесса:

СΗ3-СΗ2-СΗ2-СΗ2-СΗ2-СΗ2-СΗ2-СΗ3 ―> СΗ3-СΗ2-СΗ3 + СΗ2=СΗ-СΗ2-СΗ2-СΗ3

Большие количества пропана образуются при гидрогенизации разных видов угля и каменноугольной смолы, они достигают 80% от объема всех образующихся газов.

ректификационная колонна

Также широко распространено получение пропана по методу Фишера-Тропша, который основан на взаимодействии СО и Н2 в присутствии различных катализаторов при повышенных температуре и давлении:

nCO + (2n + 1)Η2 ―> CnΗ2n+2 + nΗ2O

3CO + 7Η2 ―> C3Η8 + 3Η2O

Промышленные объемы бутана также выделяют при нефтегазовой переработке физическими и химическими методами.

Применение

Топливо

  • При выполнении газопламенных работ на заводах и предприятиях:
    • в заготовительном производстве;
    • для резки металлолома;
    • для сварки неответственных металлоконструкций.
  • При кровельных работах.
  • Для обогрева производственных помещений в строительстве.
  • Для обогрева производственных помещений (на фермах, птицефабриках, в теплицах).
  • Для газовых плит, водогрейных колонок в пищевой промышленности.
  • В быту
    • при приготовлении пищи в домашних и походных условиях;
    • для подогрева воды;
    • для сезонного обогрева отдалённых помещений — частных домов, отелей, ферм;
    • для сварки труб, теплиц, гаражей и других хозяйственных конструкций с использованием газосварочных постов.
  • В последнее время широко используется в качестве автомобильного топлива, так как дешевле и экологически безопаснее бензина.

Хранится и перевозится в металлических баллонах ярко-красного цвета (не путать с коричневыми баллонами для гелия)

Химия и пищевая промышленность

В химической промышленности используется при получении мономеров для производства полипропилена.

Является исходным сырьём для производства растворителей.

Используется как пропеллент.

В пищевой промышленности пропан зарегистрирован в качестве пищевой добавки E944.

Хладагент

Смесь из осушенного чистого пропана (R-290a) (коммерческое обозначение для описания изобутаново-пропановых смесей) с изобутаном (R-600a) не разрушает озонового слоя и обладает низким коэффициентом парникового потенциала (GWP). Смесь подходит для функционального замещения устаревших хладагентов (R-12, R-22, R-134a) в традиционных стационарных холодильных установках и систем кондиционирования воздуха (с обязательной сменой типа компрессорного масла).

Отличие пропана от метана

Среди отличительных особенностей пропана стоит отметить:

  • более высокая эффективность при сгорании, благодаря чему он намного эффективнее метана во время проведения сварочных работ;
  • высокая инертность газа, что позволяет ему более активно вступать в разнообразные химические реакции;
  • пропан безопаснее метана и отличается наличием наркотического действия;
  • при транспортировке пропана не нужно использовать какое-то специальное оборудование, достаточно обычных стальных баллонов.

Кроме этого, пропан является более дешевым и легче заправляется.

Хранение и перевозка пропана

Пропан транспортируется и хранится в баллонах красного цвета с надписью «Пропан» ГОСТ 15860-84 , либо в специальных цистернах.

Требования безопасности

Пропан — взрывоопасный газ. С воздухом образует взрывоопасную смесь. Однако, при правильной эксплуатации практически безвреден.

Источники
  • https://master-pmg.ru/oborudovanie/molekula-propana.html
  • https://FB.ru/article/406909/propan-himicheskie-svoystva-stroenie-poluchenie-primenenie
  • https://student-madi.ru/fizika/formula-propana-v-himii.html
  • https://pressadv.ru/metally-svarka/formula-propana.html
  • https://td-np.ru/himiya_propana-html/
  • https://progipertoniju.ru/temperatura-kipeniya-propana-v-zavisimosti-ot-davleniya.html
  • https://technogaz21.ru/gazy/propan/
  • https://oilyug.ru/benzin/plamya.html

Ваша оценка?

Петр Иваныч
Петр Иваныч
Возможно этот человек ответит на ваши вопросы
Задать вопрос
Читайте также:  Как определить валентность по таблице Менделеева и как она изменяется
Рейтинг
( Пока оценок нет )
Всё о химии