Правило Вант-Гоффа. Температурный коэффициент ско­рости реакции

Зависимость скорости реакции от температуры приближенно определяется эмпирическим правилом Вант-Гоффа: при изменении температуры на каждые 10 градусов скорость большинства реакций изменяется в 2-4 раза.

Математически правило Вант-Гоффа выражается так:

                                                                              (3.6)

где v(T2) и v(T1)  — скорости реакций, соответственно при температурах Т2 и T1 (T2> T1);

γ-температурный коэффициент скорости реакции.

Значение γ для эндотермической реакции выше, чем для экзотермической. Для многих реакций γ лежит в пределах 2-4.

Физический смысл величины γ заключается в том, что он показывает, во сколько раз изменяется скорость реакции при изменении температуры на каждые 10 градусов.

Поскольку скорость реакции и константа скорости химической реакции прямопропорциональны, то выражение (3.6) часто записывают в следующем виде:

                                                                                  (3.7)

где k(T2), k(T1)- константы скорости реакции соответственно

при температурах T2 и T1;

 γ -температурный коэффициент скорости реакции.

Пример 8. На сколько градусов надо повысить температуру, что бы скорость реакции возросла в 27 раз? Температурный коэффициент реакции равен 3.

Решение. Используем выражение (3.6):

.

Получаем: 27 =  , = 3, DТ = 30.

Ответ: на 30 градусов.

Скорость реакции и время, за которое она протекает, связаны обратно пропорциональной зависимостью: чем больше v, тем

меньше t. Математически это выражается соотношением

                                                                                     (3.8)

Пример 9. При температуре 293 К реакция протекает за 2 мин. За какое время будет протекать эта реакция при температуре 273 К, если γ = 2.

Решение. Из уравнения (3.8) следует:

.

Используем уравнение (3.6), поскольку  Получим:

             мин.

Ответ: 8 мин.

Правило Вант-Гоффа применимо для ограниченного числа химических реакций. Влияние температуры на скорость процес-сов чаще определяют по уравнению Аррениуса.

Уравнение Аррениуса. В 1889 г. шведский ученый С. Арре-1иус на основании экспериментов вывел уравнение, которое на-звано его именем

,                                                                                                  (3.9)

где k — константа скорости реакции;

k0 — предэксноненциальный множитель;

 е — основание натурального логарифма;

Ea — постоянная, называемая энергией активации, определяемая природой реагентов:

R-универсальная газовая постоянная, равная 8,314 Дж/моль×К.

Значения Еa для химических реакций лежат в пределах 4 — 400 кДж/моль.

Многие реакции характеризуются определенным энергети-ческим барьером. Для его преодоления необходима энергия актации — некоторая избыточная энергия (по сравнению со вредней энергией молекул при данной температуре), которой должны обладать молекулы для того, чтобы их столкновение было эффективным, т. е. привело бы к образованию нового ве-щества. С ростом температуры число активных молекул быстро увеличивается, что и приводит к резкому возрастанию скорости реакции.

В общем случае, если температура реакции изменяется от Т1 до Т2, уравнение (3.9) после логарифмирования примет вид:

.                                                           (3.10)

Это уравнение позволяет рассчитывать энергию активации реакции при изменении температуры от Т1 до Т2.

Скорость химических реакций возрастает в присутствии катализатора. Действие катализатора заключается в том, что он образует с реагентами неустойчивые промежуточные соединения (активированные комплексы), распад которых приводит к. образованию продуктов реакции. При этом энергия активации, понижается, и активными становятся молекулы, энергия которых была недостаточна для осуществления реакции в отсутствие, катализатора. В результате возрастает общее число активных£ молекул и увеличивается скорость реакции.

Изменение скорости реакции в присутствии катализатора выражается следующим уравнением:

,                                                          (3.11)

где vкат, и Ea(кат) — скорость и энергия активации химической реакции в присутствии катализатора;

v и Еа — скорость и энергия активации химической реакции без катализатора.

Пример 10. Энергия активации некоторой реакции в отсутствие катализатора равна 75,24 кДж/моль, с катализатором — 50,14 кДж/моль. Во сколько раз возрастает скорость реакции в присутствии катализатора, если реакция протекает при температуре 298 К? Решение. Воспользуемся уравнением (3.11). Подставляя в уравнение данные

Еа = 75,24 кДж / моль = 75,24 ×103 Дж / моль и

Еа(кат)=- 50,14 кД/моль= 50,14 ×103 Дж /моль, получим

Окончательно находим:

Таким образом, снижение энергии активации на 25,1 кДж/моль привело к увеличению скорости реакции в 25 000 раз.

Ответ: в 2.5×104 раз.

Ваша оценка?

Петр Иваныч
Петр Иваныч
Возможно этот человек ответит на ваши вопросы
Задать вопрос
Читайте также:  Углеводы – классификация и свойства в таблице, общая формула
Рейтинг
( 3 оценки, среднее 1 из 5 )
Всё о химии
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: