Напишем:


✔ Реферат от 200 руб.
✔ Контрольную от 200 руб.
✔ Курсовую от 500 руб.
✔ Решим задачу от 20 руб.
✔ Дипломную работу от 3000 руб.
✔ Другие виды работ по договоренности.

Узнать стоимость!

Не интересно!

 

 

 

Влияние температуры на скорость гомогенных реакций

Повышение температуры увеличивает скорость движения молекул и вызывает, соответственно, возрастание числа столкновений между ними. Последнее влечет за собой и повышение скорости химической реакции.

В количественном отношении влияние температуры на скорость гомогенных химических реакций может быть выражено в приближенной форме правилом Вант-Гоффа:

повышение температуры на 10° увеличивает скорость гомогенных химических реакций примерно в 2÷4 раза.

Рис. 5.3. Изменение скорости реакции в зависимости от повышения

                температуры реакции.

 

Математически это будет выглядеть следующим образом:

,

где  - температурный коэффициент скорости реакции, равный примерно 2÷4.

Если бы каждое столкновение приводило к акту взаимодействия, все реакции должны были бы протекать со скоростью взрыва. На самом деле к актам взаимодействия приводит лишь незначительное число столкновений. К реакции приводят столкновения только активных молекул, запас энергии которых достаточен для совершения элементарного акта реакции. Число активных соударений при данной температуре пропорционально общему содержанию реагирующих молекул. С ростом температуры число активных соударений возрастает гораздо сильнее, чем общее число столкновений.

Для того, чтобы при столкновении молекулы успели прореагировать, химические связи должны быть «расшатаны». Для этого молекула должна обладать повышенным запасом энергии. Молекулы, обладающие этим необходимым запасом энергии, называются активированными. При нагревании веществ активизация молекул происходит благодаря ускорению их поступательного движения, а также вследствие усиления колебательного движения атомов и атомных групп в самих молекулах. Все это приводит к ослаблению связей внутри молекул. Таким образом, для того, чтобы молекулы прореагировали, им необходимо преодолеть некоторый энергетический барьер.

В соответствии с изложенным изменение энергии системы А+В при ее превращении в S может быть графически представлено следующим образом (рис. 5.4.)

Молекула S образуется из А и В в результате перераспределения атомов и химических связей. Для образования молекулы S активированные молекулы А и В при столкновении вначале образуют активированный комплекс АВ, внутри которого и происходит перераспределение атомов. Энергия, необходимая для возбуждения молекулы до энергии активирования комплекса, называется энергией активации Еа.                       

Рис. 5.4.     Диаграмма  изменения энтальпий  для эндотермических (а)

                   и  экзотермических  (б)   процессов.

На рисунке а) видно, что продукты реакции обладают большим запасом энергии, чем исходные вещества, то есть реакция А + В ® S эндотермическая. Разность между энергией продуктов реакции и исходных веществ является тепловым эффектом реакции .

Соответствующий график для экзотермической реакции С + Д → Р представлен на рисунке б).

Взаимосвязь между константой скорости реакции k и энергией активации Еа определяется уравнением Аррениуса:

,

где А – предэкспоненциальный коэффициент, связанный с вероятностью и числом столкновений.

Логарифмирование уравнения Аррениуса:

 или

дает уравнение прямой линии. Знание констант скорости при нескольких температурах позволяет определить энергию активации данной реакции:

Тангенс угла наклона этой прямой к оси абсцисс равен:

.

Энергия активации является тем фактором, посредством которого природа реагирующих веществ влияет на скорость химической реакции.

 - «быстрые» реакции    (ионные реакции в растворах);

 - реакции с измеряемой скоростью

(Н2SO4 + Na2S2O3 = Na2SO4 + SO2 + S + H2O);

 - «медленные» реакции

(синтез NH3 при обычных температурах).

Путь реакции может быть изменен введением в систему катализаторов.

Катализаторами называются вещества, которые влияют на скорость химической реакции, но их химический состав сохраняется после промежуточных стадий. Влияние катализаторов на скорость химических реакций называется катализом.

Катализаторы могут снижать энергию активации, направляя реакцию по новому пути. Снижение энергии активации приводит к возрастанию доли реакционноспособных частиц и, следовательно, к ускорению процесса взаимодействия. Катализаторы, ускоряющие реакцию, называются положительными. Известны также отрицательные катализаторы (ингибиторы). Они замедляют реакцию, связывая активные промежуточные молекулы или радикалы, и тем самым препятствуют протеканию реакции.

Катализаторы делятся на гомогенные и гетерогенные. Гомогенные находятся в одном и том же агрегатном состоянии хотя бы с одним из реагентов.

Гомогенный катализ осуществляется чаще всего через образование неустойчивых промежуточных продуктов. Например, реакция А + В → С требует большой энергии активации Еа. В присутствии катализатора протекают реакции А + К → АК  и  АК + В → С + К,  где К – катализатор.

Рис. 5.6. Энергетическая диаграмма хода реакции А + В = С

               без катализатора и с катализатором.

 

Если наибольшая из энергий активации Еа' и Еа'' для этих последовательных реакций меньше, чем энергия активации для реакции без катализатора Еа, то катализатор является положительным.

Пример гомогенного катализатора:

SO2 + O2  = SO3     - почти не идет;

2NO + O2 = NO2   - промежуточное состояние;

SO2 + NO2 = SO3 + NO – активно протекающая реакция (нитрозный способ серного ангидрида, а из него – серной кислоты) .

 

Предыдущие материалы: Следующие материалы: